We apologize for any inconvenience caused by the internet outage in our area on Wednesday, 12th June 2024. Our website, email, and phone services were temporarily unavailable
between 9:30 am and 4:00 pm. We are pleased to inform you that the issue has been resolved, and all services are now back to normal. Thank you for your patience and understanding.


LABOKLIN (UK)| Genetic Diseases | Dogs| Rhodesian Ridgeback DNA Bundle (DM2 + Haemophilia B + Hereditary Deafness + B Locus + JME + D Locus)
prices in Pound
 
  Home
  News and offers
  Genetic Diseases
Dogs
Cats
Horses
Cattle
Pigs
Rabbit
Sheep
  Coat Colours / Length
  Identity / Parentage
  Reptiles & Amphibians
  Avian Tests
  Profiles / Screening
  Infectious Diseases
  Allergy testing
  Organs / Parameters
  Downloads & Order
  Order Kit Online
  About Us
  Crufts & Shows
  Contact Us
  Kennel Club ABS
  facebook
 
**NEW**



Maine Coon Special offer:
8 DNA tests for just £84.95 incl VAT
Maine Coon 8 DNA tests bundle (HCM, SMA, PKDef, Poly, b, b1, cb, cs) 
**NEW**



Bengal Special offer:
4 Bengal Specific DNA tests for just £72.00 incl VAT
Bengal DNA bundle (rdAc-PRA + b-PRA + PK-Def + Blood Groups) 



British Special offer:
4 Breed Specific DNA tests for just £72.00 incl VAT
British Short / Long Hair DNA bundle (PKD + pd-PRA + ALS + Blood Groups)



Burmese Special offer:
4 Breed Specific DNA tests for just £72.00 incl VAT
Burmese DNA bundle (Hypokalemia (BHK) + Head Defect + Gangliosidosis (GM2) + Blood Groups



Birman Special offer:
5 Breed Specific DNA tests for just £72.00 incl VAT
Birma DNA bundle (PKD + pd-PRA + Hypotrichiose + MPS6 + Blood Groups)



Maine Coon Special offer:
5 Breed Specific DNA tests for just £72.00 incl VAT
Maine Coon DNA bundle (HCM1 + SMA + PK-Def + F11 + Blood Groups)



Ragdoll Special offer:
5 Breed Specific DNA tests for just £72.00 incl VAT
Ragdoll DNA bundle (HCM1 + HCM3 + PKD + pd-PRA + Blood Groups)



Norwegian Special offer:
4 Breed Specific DNA tests for just £72.00 incl VAT
Norwegian Forest DNA bundle (PK-Def + Amber + GSD4 + Blood Groups)



Feline Special Offer:
8 cat DNA tests for just £84.95 including VAT
HCM, HCR, GSD4, PKD, PRA, PK-Def., SMA, Blood Groups

new test:      Paradoxical Pseudomyotonia (PP) in English Cocker and English Springer Spaniels  
new test:      Dyserythropoietic Anemia and Myopathy Syndrome (DAMS) in English Springer Spaniel
new test:      Lysosomal Storage Diseases (LSD) in Dalmatian and Doberman  
new Kennel Club DNA testing schemes with LABOKLIN:
   Osteochondrodysplasia (OCD) / Skeletal Dwarfism in Miniature Poodles
  DINGS2: Deafness with Vestibular Dysfunction in Doberman
   Dyserythropoietic Anemia and Myopathy Syndrome (DAMS) in English Springer Spaniel


Rhodesian Ridgeback DNA Bundle (DM2 + Haemophilia B + Hereditary Deafness + B Locus + JME + D Locus)

Test number: 8647

Price: £ 144.00 (including VAT) for all 6 tests

  1 ) Hereditary Deafness EOAD / Non-Syndromic

Breeds
Beauceron , Rhodesian Ridgeback , Rottweiler .
Description

This listing covers four different tests , however, we will perform one test only depending on the breed.

Rhodesian Ridgeback

Early Onset Adult Deafness (EOAD)

EOAD is an inherited disease affecting the Rhodesian Ridgeback breed, it is characterised by progressive loss of hearing which starts around 4 months of age and it is usually present around the age of 1-2 years.

Rottweiler

Early-onset Canine Nonsyndromic Hearing Loss

Sensorineural hearing loss has been observed in Rottweilers. The disease is clinically and genetically similar to human LOXHD1-related hearing disorder, a DNA test is now available to help breeders in controlling this type of hearing disorder in the population.

Bauceron

Nons-Syndromic deafness

Another non-syndromic deafness affecting the Beauceron dog breed. The disease is characterised by a bilateral hearing loss in puppies and it is not linked to coat colour.


Please note that the test performed will be different depending on the breed:

if the breed is:

  • in Doberman : we will perform DINGS1 (mutation in the PTPRQ gene),
  • in Rhodesian Ridgfebacks, we test for the EOAD variant
  • In Beauceron, we test for Nons-Syndromic Deafness in Bauceron (CDH23), and
  • in Rottweilers, we test for arly-onset Canine Nonsyndromic Hearing Loss in Rottweilers.

We also offer Deafness with Vestibular Dysfunction (DVD), aka DINGS 1 & 2 in Doberman

Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
1-2 weeks

  2 ) Degenerative Myelopathy / Degenerative Radiculomyelopathy) DM (Exon 2) / SOD1

Breeds
Airedale Terrier , Alaskan Malamute , All Dog Breeds , American Eskimo , Bernese Mountain Dog , Bloodhound , Borzoi (Russian Wolfhound) , Boxer , Cavalier King Charles Spaniel , Canaan Dog , Welsh Corgi (Cardigan) , Chesapeake Bay Retriever , Cockapoo (English) , Cockapoo (American) , Fox Terrier , French Bull Dog , German Shepherd , Glen Of Imaal Terrier ( GIT ) , Golden Retriever , Goldendoodle , Pyrenean Mountain Dog (Great Pyrenees) , Hovawart , Pumi ( Hungarian Pumi / Pumik ) , Jack Russell Terrier , Kerry Blue Terrier , Labradoodle , Labrador Retriever , Lakeland Terrier , Northern Inuit (Tamaskan / British Timber Dog) , Nova Scotia Duck tolling Retriever ( NSDTR / Toller) , Pembroke Welsh Corgi , Poodle , Pug , Rhodesian Ridgeback , Rough Collie , Soft Coated Wheaten Terrier , Shetland Sheepdog (Sheltie) , Smooth Collie , Utonagan , Wire Fox Terrier .
Kennel Club
This test is part of the Official UK Kennel Club DNA Testing Scheme in Chesapeake Bay Retriever, French Bull Dog, German Shepherd, Nova Scotia Duck tolling Retriever ( NSDTR / Toller), Rough Collie, and Smooth Collie.

for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying features will not be recorded by the Kennel Club.

In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.

important: When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.

The Disease
Canine degenerative myelopathy (also known as chronic degenerative radiculomyelopathy) is a progressive disease of the spinal cord in older dogs. The disease has an insidious onset typically between 7 and 14 years of age. It begins with a loss of coordination (ataxia) in the hind limbs. As of July 15, 2008 the mutated gene responsible for DM has been found present in 43 breeds including German Shepherds, Boxers, Chesapeake Bay Retrievers, Rhodesian Ridgebacks, and both breeds of Welsh Corgis. The disease is chronic and progressive, and resulting in paralysis.
Clinical Signs
Degenerative myelopathy initially affects the back legs and causes muscle weakness and loss, and lack of coordination. These cause a staggering effect that may appear to be arthritis. The dog may drag one or both rear paws when it walks. This dragging can cause the nails of one foot to be worn down. The condition may lead to extensive paralysis of the back legs. As the disease progresses, the animal may display symptoms such as incontinence and has considerable difficulties with both balance and walking. If allowed to progress, the animal will show front limb involvement and extensive muscle atrophy. Eventually cranial nerve or respiratory muscle involvement necessitates euthanasia. Progression of the disease is generally slow but highly variable. The animal could be crippled within a few months, or may survive up to three years
Trait of Inheritance
Tow alleles are invloved in Degenerative Myelopathy, A and G, therefore a test result can be A/A, A/G, or G/G.

Mode of inheritance is autosomal recessive with variable penetrance;

Inheritance : AUTOSOMAL RECESSIVE trait


 

Sire

 

Dam

 

Offspring

         
clear
clear
100% clear
         
clear
carrier
50%  clear + 50% carriers
         
clear
affected
100% carriers
         
carrier
clear
50%  clear + 50% carriers
         
carrier
carrier
25% clear + 25% affected + 50% carriers
         
carrier
affected
50% carriers + 50% affected
         
affected
clear
100%  carriers
         
affected
carrier
50% carriers + 50% affected
         
affected
affected
100% affected

 


Clear

Genotype: N / N [ Homozygous normal ]

The dog is noncarrier of the mutant gene.

It is very unlikely that the dog will show signs of the Degenerative Myelopathy

 

Carrier

Genotype: N / DM (Exon 2) [ Heterozygous ]

The dog carries one copy of the mutant gene and one copy of the normal gene.

It is very unlikely that the dog will show signs of the Degenerative Myelopathy

 

Affected

Genotype: DM (Exon 2) / DM (Exon 2) [ Homozygous mutant ]

 

The dog carries two copies of the mutant gene and therefore it will pass the mutant gene to its entire offspring.

The dog may or may not show signs of the disease
Description

SOD1-Gene

Please note that Exon 2 can be found in all dog breeds, there is another DM mutation in Exon 1 which can only be found in Bernese Mountain Dog, click here for more information.

For bernese Mountain Dog we have a special offer for both Exon 1 and Exon 2 at reduced price, click here for more details.

Sample Requirements
Buccal Swabs or 0.5 - 1 ml blood in EDTA Blood Tube
Turnaround
1 - 2 weeks

  3 ) Coat Colour: D-Locus D1 ( Dilution / Dilute )

Breeds
All Dog Breeds , Border Collie , Boston Terrier , Bulldog (English) , Chihuahua , Doberman Pinscher , French Bull Dog , German Pinscher , Koolie ( Australian Koolie ) , Labrador Retriever , Large Munsterlander , Miniature Pinscher , Newfoundland , Rhodesian Ridgeback , Staffordshire Bull Terrier .
Kennel Club
This test is part of the Official UK Kennel Club DNA Testing Scheme in Labrador Retriever.

for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying features will not be recorded by the Kennel Club.

In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.

important: When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.

Description

The D locus is the primary locus associated with diluted pigment, which results in coats that would otherwise be black or brown instead showing up as gray, or blue in the case of black, and pale brown or Isabella / Lilac / Lavender in the case of brown. The melanophilin gene has recently been shown to be responsible, but not all of the dilute causing mutations have been identified yet.

A recessive mutation in the melanophilin gene was identified as the cause of colour dilution phenotypes in the dog. Two alleles (variants) are described: the dominant full colour (D) and the recessive dilute (d). Two copies of dilute are needed to lighten black pigment to blue / grey and brown (liver / chocolate / cocoa / red in border collie) pigment to lilac / isabella / lavender (in Pomeranian). A diagnostic DNA test identifies the specific variants of the MLPH gene.

Please note that in the Chow Chow, Thai Ridgeback and Sloughi breeds, there is another mutation that can cause coat colour dilution, it is the D2 Locus mutation and in those breeds both D1 Locus and D2 Locus mutations must be tested for complete analysis.

Please note that in the Chihuahua, Italian Greyhound, Mudi (Hungarian Mudi) and Hungarian Pumi breeds, there is another mutation that can cause coat colour dilution, it is the D3 Locus mutation and in those breeds both D 1Locus and D3 Locus mutations must be tested for complete analysis.

Please note that dilution (blue, lilac, isabella, etc) is just a colour and that it is not known to be associated with any health conditions

KC

Please note that this test is part of the KC DNA testing scheme in Labrador Retriever. If you would like Laboklin to send the result to the KC, please sign the declaration at the bottom of the form to give us a permission . Please note that the KC will oly publish clear results but would make a note of any result received.


Colour Dilution Alopecia (CDA)

There is no test for CDA and there is no evidence that CDA is caused by dilution

CDA is a genetic recessive inherited condition that causes patches of hair thinning or loss and may also include flaky and/or itchy skin. CDA occurs in dilute dogs (homozygous for the dilute gene d/d) in some breeds, however there is no direct link between CDA and the dilute gene, and there is no evidence that the dilute gene is responsible for CDA. It is though that there are other, not yet identified, genetic factors causing CDA in dilute dogs of some breeds. Any colour can carry CDA but symptoms are only expressed in blue and isabella dogs affected by CDA.

breeding

Since CDA is a recessive gene, it can, in theory, be bred out of most lines by breeding dilute dogs with healthy coats. Breeding healthy dilute dogs with healthy dilute dogs is one way to reduce the occurrence of CDA until testing becomes available.

Breeds known to be affected by CDA:

  • Bernese Mountain Dog
  • Boston Terrier
  • Chihuahua
  • Chow Chow
  • Dachshund
  • Doberman Pinscher
  • Great Dane
  • Irish Setter
  • Italian Greyhound
  • Mudi (Hungarian Mudi)
  • Newfoundland
  • Saluki
  • Schipperke
  • Shetland Sheepdog
  • Standard Poodle
  • Whippet
  • Yorkshire Terrier

 
Further reading
Coat Colour Inheritance Chartshtml file
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
1 - 3 weeks

  4 ) Juvenile Myoclonic Epilepsy ( JME )

Breed
Rhodesian Ridgeback .
Kennel Club
This test is part of the Official UK Kennel Club DNA Testing Scheme in Rhodesian Ridgeback.

for UK registered dogs, Laboklin can send results of the tests which are part of the Official UK Kennel Club DNA testing scheme to the Kennel Club (KC) to be recorded and published as part of the Kennel Club scheme. Results will only be recorded and published by the KC if the result report includes the dog’s microchip or tattoo number along with either the dog’s registered name or registered number. Any test results that do not carry these identifying features will not be recorded by the Kennel Club.

In order to ensure that test results are sent to the Kennel Club, customers must also sign the declaration section on the order form to give Laboklin permission to do so.

important: When you sign the declaration, Laboklin will send the results to the KC on your behalf, and you do not need to send them to the KC yourself again to avoid unnecessary duplications.

The Disease
Juvenile Myoclonic Epilepsy (JME) in Rhodesian Ridgebacks

JME is an inherited disease in the Rhodesian Ridgeback breed. Affected dogs start showing symptoms between the age of 6 weeks and 18 months. Symptoms include frequest myoclonic jerks or twiches especially when the dogs are sleeping or resting. Photo sensitivity has also been noticed in affected dogs. Most affected dogs will also develop more severe generalized and tonic clonic seizures.

Due to the recessive mode of inheritance, affected dogs must inherit two copies of the mutation, one from each parents.

The test will tell you if your dog has 0, 1 or 2 copies of the mutation. Clear (N/N) and carriers (N/ JME) are healthy dogs and will not develop the specific symptoms associated with the JME mutation, however carriers should only be bred to clear dogs to avoid having affected puppies.

Please note that there are other forms of epilepsy that cannot be eliminated by this test.

Trait of Inheritance
.

Inheritance : AUTOSOMAL RECESSIVE trait


 

Sire

 

Dam

 

Offspring

         
clear
clear
100% clear
         
clear
carrier
50%  clear + 50% carriers
         
clear
affected
100% carriers
         
carrier
clear
50%  clear + 50% carriers
         
carrier
carrier
25% clear + 25% affected + 50% carriers
         
carrier
affected
50% carriers + 50% affected
         
affected
clear
100%  carriers
         
affected
carrier
50% carriers + 50% affected
         
affected
affected
100% affected

 


Clear

Genotype: N / N [ Homozygous normal ]

The dog is noncarrier of the mutant gene.

It is very unlikely that the dog will develop Juvenile Myoclonic Epilepsy ( JME ). The dog will never pass the mutation to its offspring, and therefore it can be bred to any other dog.

 

Carrier

Genotype: N / JME [ Heterozygous ]

The dog carries one copy of the mutant gene and one copy of the normal gene.

It is very unlikely that the dog will develop Juvenile Myoclonic Epilepsy ( JME ) but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%.

Carriers should only be bred to clear dogs.

Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)

 

Affected

Genotype: JME / JME [ Homozygous mutant ]

 

The dog carries two copies of the mutant gene and therefore it will pass the mutant gene to its entire offspring.

The dog is likely to develop Juvenile Myoclonic Epilepsy ( JME ) and will pass the mutant gene to its entire offspring
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
2-3 weeks

  5 ) Coat Colour: B Locus (bd, bc, bs) Brown Coat Colour

Breeds
All Dog Breeds , American Cocker Spaniel , Australian Shepherd , Bedlington Terrier , Border Collie , Welsh Corgi (Cardigan) , Dachshund , Dalmatian , Doberman Pinscher , English Cocker Spaniel , Flatcoated Retriever , Fox Terrier , French Bull Dog , Galgo Espanol , German Longhaired Pointer , German Shorthair Pointer , Gordon Setter , Griffon Bruxellois , Irish Soft Coated Wheaten Terrier , Koolie ( Australian Koolie ) , Labrador Retriever , Miniature Pinscher , Newfoundland , Pointer , Portuguese Waterdog , Scottish Terrier , Weimaraner .
Description

This test is for the 'bd', 'bc' and 'bs'variants, which are described in all dog breeds and are responsible for the brown coat colour, which is also known in some breeds as liver, chocolate, chestnut, sedge, and less frequently, red. Two copies of the b-allele are needed to dilute black pigment to brown. For red or yellow dogs, the brown allele does not dilute the hair colour, but will change the colour of nose and foot pads from black to brown if two brown alleles are present.

When one of the variants is found homozygous (bd/bd, bc/bc or bs/bs), dark pigment (eumelanin) is diluted to brown in the pigmented areas. However, when several variants of the B-locus are found in heterozygous state (example N/bd and N/bc), it is not always possible to directly determine the influence on the eumelanin because this depends on whether the variants are located on the same or different chromosmes, however, the dog will definitely pass the variants to its offspring.

Australian Shepherd and Lancashire Heeler

Please note there are two additional rare variants, which are not analysed in this test. The 'b4' variant which is only found in few Australian Shephered lines, and the 'be' variant which is only found in Lancashire Heeler, and therefore for a complete analysis in Australian Shepherd and Lancashire Heeler, you need to order this test in addition to the rare variant test . You can take advantage of our special offer 'second coat colour test at half price (excluding bundles)'.

French Bulldog

In French Bulldog, in addition to the B-locus, the Cocoa gene is also responsible for the brown coat colour, and therefore, in addition to this test you also need to order the Cocoa coat colour test . You can of course take advantage of our special offer 'second coat colour test at half price (excluding bundles)'.

 
Further reading
Coat Colour Inheritance ChartsHTML file
Brittany Coat ColoursPDF file
B Locus Inheritence ChartPDF file
Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
1 - 3 weeks

  6 ) Haemophilia B (factor IX deficiency / F9 )

Breeds
American Akita , Hovawart , Lhasa Apso , Rhodesian Ridgeback .
The Disease
In cooperation with Prof. Dr. Mischke (Tierärztliche Hochschule Hannover) LABOKLIN was able to identify a missense-mutation in exon 7 of the factor IX gene that is responsible for the lack of active factor IX protein in Rhodesian Ridgeback Dogs.

Haemophilia B is a sex-linked disorder (x-chromosomal recessive). Male dogs express the disease when they have one mutated x-chromosome. The mutated x-chromosome comes from the bitch. In most cases female dogs are carrier of one mutated x-chromosome without being diseased (conductor). According to Mendel's Law of Inheritance, 50% of the male puppies of a carrier bitch will have the mutated x-chromosome and express the disease and 50% of the female puppies will be healthy carriers (conductors). Female dogs will be diseased when they have two mutated x-chromosomes (one from the mother, one from the father). In that case both, father and mother must have the mutated x-chromosome (e.g. diseased male dog bred to conductor bitch).

Trait of Inheritance
1. Homozygous healthy:

Genotype female: N(X)/N(X),
Genotype male: N(X)/Y (homozygous healthy)
A dog like this is healthy and does not carry the mutated x-chromosome. Offspring of this dog will not get the mutated x-chromosome.

2. Heterozygous carrier (only female):

Genotype female: N(X)/FIX(X) (heterozygous carrier)
A bitch like this carries one copy of the mutated gene. It is unlikely that the bitch will suffer from haemophilia B, however there is a 50% chance that she will pass on the mutation to her offspring.

3. Homozygous affected:

Genotype female FIX(X)/FIX(X) (homozygous affected)
Genotype male FIX(X)/Y (hemizygous affected)
Because of the x-chromosomal mode of inheritance, a homozygous affected female dog carries two mutated x-chromosomes and a homozygous affected male dog carries one mutated x-chromosome. Female and male homozygous affected dogs have a high risk to express haemophilia B. The bitch will pass on the mutation to a 100% of her offspring and 50% of the offspring of the male dog will get the mutated x-chromosome.


Inheritance : X-LINKED RECESSIVE trait

 

Sire

  Dam   Offspring
        Males   Females
clear
clear
100% clear
 
100% clear
             
clear
carrier
50%  clear + 50% affected
 
50%  clear + 50% carriers
             
clear
affected
100% affected
 
100% carriers
             
affected
clear
100%  clear
 
100%  carriers
             
affected
carrier
50% affected + 50% clear
 
50% affected + 50% carriers
             
affected
affected
100% affected
 
100% affected

 


Male:

Clear

Genotype: N [ normal ]

The dog is noncarrier of the mutant gene.

The dog will never develop Haemophilia B (factor IX deficiency / F9 ) and therefore it can be used in breeding and should only be bred to clear females.

 

Affected

Genotype: FIX [ mutant ]

 

The dog carries the mutant gene and will pass it its entire female offspring.

The dog will develop Haemophilia B (factor IX deficiency / F9 ) and will pass the mutant gene to its entire female offspring

Female:

Clear

Genotype: N / N [ Homozygous normal ]

The dog is noncarrier of the mutant gene.

The dog will never develop Haemophilia B (factor IX deficiency / F9 ) and therefore it can be used in breeding and should only be bred to clear females.

 

Carrier

Genotype: N / FIX [ Heterozygous ]

The dog carries one copy of the mutant gene and one copy of the normal gene.

The dog will never develop Haemophilia B (factor IX deficiency / F9 ) but since it carries the mutant gene, it can pass it on to its offspring.

 

Affected

Genotype: FIX / FIX [ Homozygous mutant ]

 

The dog carries two copies of the mutant gene and therefore it will pass the mutant gene to its entire offspring.

The dog will develop Haemophilia B (factor IX deficiency / F9 ) and will pass the mutant gene to its entire female offspring
Description

DNA test

The mutation responsible for haemophilia B can now be identified using our DNA-test. The test can be performed on dogs of any age and even puppies can be tested. The DNA test does not only differentiate healthy and diseased dogs, but furthermore identifies healthy carrier (female) dogs. This is of crucial importance for dog breeders. To achieve a maximum reliability of the test result, we perform the DNA-test of each submitted sample in two independent test runs.

Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
1 - 2 weeks

We will run this test 2 independant times on your sample to ensure that the result is 100% accurate

Price for the above 6 tests
£ 144.00 (including VAT)

To order:




new test:
Androgen Insensitivity Syndrome (AIS)
new test:
ACAN Dwarfism (Chondrodysplasia)
new test:
Predictive Height Test ( LCORL)
new test:

Tractability
new test:
Coat colour Sunshire Dilution



See also:

 
 
Home   |   Genetic Diseases  |   Coat Colours / Length  |   Identity / Parentage  |   Reptiles & Amphibians  |   Avian Tests  |   Profiles / Screening  |   Infectious Diseases  |   Allergy testing  |   Organs / Parameters  |   About us  |   Contact Us
LABOKLIN GmbH & Co. KG
ISO / DIN 17025 Accredited Laboratory
© 2007-2023 Laboklin (UK)
Unit 20, Wheel Forge Way, Trafford Park, Manchester, M17 1EH
Tel. 0161 282 3066