prices in Pound
 
  Home
  News and offers
  Genetic Diseases
Dogs
Cats
Horses
Cattle
Sheep
Rabbit
Pigs
  Coat Colours / Length
  Identity / Parentage
  Reptiles & Amphibians
  Avian Tests
  Profiles / Screening
  Infectious Diseases
  Allergy testing
  Organs / Parameters
  Downloads & Order
  Order Kit Online
  About Us
  Crufts & Shows
  Contact Us
  Kennel Club ABS
  facebook
 
**NEW**



Bengal Special offer:
4 Bengal Specific DNA tests for just £72.00 incl VAT
Bengal DNA bundle (rdAc-PRA + b-PRA + PK-Def + Blood Groups) 



British Special offer:
4 Breed Specific DNA tests for just £72.00 incl VAT
British Short / Long Hair DNA bundle (PKD + pd-PRA + ALS + Blood Groups)



Burmese Special offer:
4 Breed Specific DNA tests for just £72.00 incl VAT
Burmese DNA bundle (Hypokalemia (BHK) + Head Defect + Gangliosidosis (GM2) + Blood Groups



Birman Special offer:
5 Breed Specific DNA tests for just £72.00 incl VAT
Birma DNA bundle (PKD + pd-PRA + Hypotrichiose + MPS6 + Blood Groups)



Maine Coon Special offer:
5 Breed Specific DNA tests for just £72.00 incl VAT
Maine Coon DNA bundle (HCM1 + SMA + PK-Def + F11 + Blood Groups)



Ragdoll Special offer:
5 Breed Specific DNA tests for just £72.00 incl VAT
Ragdoll DNA bundle (HCM1 + HCM3 + PKD + pd-PRA + Blood Groups)



Norwegian Special offer:
4 Breed Specific DNA tests for just £72.00 incl VAT
Norwegian Forest DNA bundle (PK-Def + Amber + GSD4 + Blood Groups)



Feline Special Offer:
8 cat DNA tests for just £84.95 including VAT
HCM, HCR, GSD4, PKD, PRA, PK-Def., SMA, Blood Groups

new bundle: White Swiss Shepherd DNA bundle
new test:      Limb Girdle Muscular Dystrophy (LGMD) in Dachhsund  
new test:      Dyserythropoietic Anemia and Myopathy Syndrome (DAMS) in English Springer Spaniel
new Kennel Club DNA testing schemes with LABOKLIN:
   Dyserythropoietic Anemia and Myopathy Syndrome (DAMS) in English Springer Spaniel
  Primary Open Angle Glaucoma (POAG) in Basset Hound, Basset Fauve de Bretagne (Petit), and Norwegian Elkhound


Norwegian Forest DNA bundle (PK-Def + Amber + GSD4 + Blood groups)

Test number: 8720

Price: £ 72.00 (including VAT) for all 4 tests

  1 ) PK Deficiency (Pyruvate Kinase Deficiency)

Breeds
Abyssinian , Bengal (Leopard cat) , Domestic Longhair , Domestic Shorthair , Egyptian Mau , LaPerm Longhair , LaPerm Shorthair , Maine Coon , Norwegian Forest Cat , Ocicat , Savannah , Siberian , Singapura , Somali .
The Disease
Pyruvate kinase (PK) is an enzyme critical to the anaerobic glycolytic pathway of energy production in the erythrocyte. If erythrocytes are deficient in PK they are unable to sustain normal cell metabolism and hence are destroyed prematurely. This deficiency manifests as an hemolytic anemia of variable severity with a strong regenerative response. In cats, PK deficiency has been described in Abyssinian and Somali cats. The feline disease differs from the canine disease in that affected cats can have a normal life span, only intermittently have anemia, and do not seem to develop either osteosclerosis or liver failure. The clinical signs of disease reflect the anemic status of the animal and include exercise intolerance, weakness, heart murmur and splenomegaly.
Trait of Inheritance
PK is inherited as an autosomal recessive condition. Heterozygotes (carriers) do not have any clinical signs of disease and live normal lives. They are able to propagate mutations throughout the population however and it is therefore important that carrier animals are detected prior to breeding. PK deficiency can be detected, using molecular genetic testing techniques. These tests identify both affected and carrier animals. It is also possible to identify animals deficient in PK activity through enzyme analysis in those breeds where a molecular genetic test is not available.

Inheritance : AUTOSOMAL RECESSIVE trait


 

Sire

 

Dam

 

Offspring

         
clear
clear
100% clear
         
clear
carrier
50%  clear + 50% carriers
         
clear
affected
100% carriers
         
carrier
clear
50%  clear + 50% carriers
         
carrier
carrier
25% clear + 25% affected + 50% carriers
         
carrier
affected
50% carriers + 50% affected
         
affected
clear
100%  carriers
         
affected
carrier
50% carriers + 50% affected
         
affected
affected
100% affected

 


Clear

Genotype: N / N [ Homozygous normal ]

The cat is noncarrier of the mutant gene.

It is very unlikely that the cat will develop PK Deficiency (Pyruvate Kinase Deficiency). The cat will never pass the mutation to its offspring, and therefore it can be bred to any other cat.

 

Carrier

Genotype: N / PK [ Heterozygous ]

The cat carries one copy of the mutant gene and one copy of the normal gene.

It is very unlikely that the cat will develop PK Deficiency (Pyruvate Kinase Deficiency) but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%.

Carriers should only be bred to clear cats.

Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)

 

Affected

Genotype: PK / PK [ Homozygous mutant ]

 

The cat carries two copies of the mutant gene and therefore it will pass the mutant gene to its entire offspring.

The cat is likely to develop PK Deficiency (Pyruvate Kinase Deficiency) and will pass the mutant gene to its entire offspring
Description

PK - The Mutation-based Test and its Advantages The genetic defect leading to the disease has been identified. By DNA testing the responsible mutation can be shown directly. This method provides a very high accuracy test and can be done at any age. It offers the possibility to distinguish not only between affected and clear dogs, but also to identify clinically healthy carriers. This is an essential information for controlling the disease in the breed as carriers are able to spread the disease in the population, but can not be identified by means of common laboratory diagnostic. If a particularly valuable animal turns out to be a carrier, it can be bred to a non-affected animal, and non-carrier puppies can be saved for the next round of breeding.

Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
1 - 2 weeks

  2 ) Glycogen Storage Disease ( GSD ) Type IV

Update 25/11/2011 price of Glycogen Storage Disease ( GSD ) Type IV in Norwegian Forest Cats has been reduced to £49.95 (VAT included)
Breed
Norwegian Forest Cat .
The Disease
Glycogen storage disease type IV (GSD IV) of the Norwegian forest cat is an inherited abnormality of glucose metabolism. Normally, excess glucose is stored in many tissues as glycogen. If energy is needed, glucose molecules are removed from glycogen. The ability to add and remove glucose molecules from glycogen efficiently is dependent on its highly branched structure. The glycogen branching enzyme (GBE) is an enzyme of glycogen synthesis necessary to produce the branching structure. Deficiency of GBE activity leads to abnormal glycogen accumulation in myocytes, hepatocytes, and neurones, causing variably progressive, benign to lethal organ dysfunctions. Most affected kittens die at or soon after bird, presumably due to hypoglycemia. Survivors of the perinatal period appear clinically normal until onset of progressive neuromuscular degeneration at 5 month of age.
Trait of Inheritance
The mutation and inheritance The mutation in the GBE1 gene which has been suggested to cause GSD-IV has recently been published by the group of John C. Fyfe at the University of Michigan, USA. GSD IV is inherited as an autosomal recessive trait. So there are three conditions a cat can be: it can be clear or homozygous normal (genotype N/N) meaning that it does not carry the mutation and will not develop GSD IV. Since it also cannot pass the mutation onto its offspring, it can be mated to any other cat. A cat which has one copy of the GBE1 gene with the mutation and one copy without the mutation is called a carrier or heterozygous (genotype N/GSD-IV); while it will not be affected by GSD IV, it can pass the mutation onto its offspring and should therefore only be mated to clear cats. Affected kitten have two GBE1 gene copies with the mutation (genotype GSDIV/ GSD-IV or homozygous affected); they will always pass the mutated gene onto their offspring.

Inheritance : AUTOSOMAL RECESSIVE trait


 

Sire

 

Dam

 

Offspring

         
clear
clear
100% clear
         
clear
carrier
50%  clear + 50% carriers
         
clear
affected
100% carriers
         
carrier
clear
50%  clear + 50% carriers
         
carrier
carrier
25% clear + 25% affected + 50% carriers
         
carrier
affected
50% carriers + 50% affected
         
affected
clear
100%  carriers
         
affected
carrier
50% carriers + 50% affected
         
affected
affected
100% affected

 


Clear

Genotype: N / N [ Homozygous normal ]

The cat is noncarrier of the mutant gene.

It is very unlikely that the cat will develop Glycogen Storage Disease ( GSD ) Type IV. The cat will never pass the mutation to its offspring, and therefore it can be bred to any other cat.

 

Carrier

Genotype: N / GSDIV [ Heterozygous ]

The cat carries one copy of the mutant gene and one copy of the normal gene.

It is very unlikely that the cat will develop Glycogen Storage Disease ( GSD ) Type IV but since it carries the mutant gene, it can pass it on to its offspring with the probability of 50%.

Carriers should only be bred to clear cats.

Avoid breeding carrier to carrier because 25% of their offspring is expected to be affected (see table above)

 

Affected

Genotype: GSDIV / GSDIV [ Homozygous mutant ]

 

The cat carries two copies of the mutant gene and therefore it will pass the mutant gene to its entire offspring.

The cat is likely to develop Glycogen Storage Disease ( GSD ) Type IV and will pass the mutant gene to its entire offspring
Description

By DNA testing, the responsible mutation can be shown directly. This method provides a very high accuracy test and can be done at any age. It offers the possibility to distinguish not only between affected and clear cats, but also to identify clinically healthy carriers. This is an essential information for controlling the disease in the breed, as carriers are able to spread the disease in the population, but can not be identified by means of common laboratory diagnostic. To ensure maximum test reliability, the test is always performed in two independent test runs per sample.

Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
2 - 3 weeks

We will run this test 2 independant times on your sample to ensure that the result is 100% accurate


  3 ) Amber coat colour

Breed
Norwegian Forest Cat .
Description

In Norwegian Forest Cats, the Amber gene lightens the black colour. Cat which are black at birth, becomes brighter until they finally appear almost amber or cinnamon during the first year of life. The black colour is retained only at the tips of the tail.

The mutation responsible for the Amber phenotype (e) is located at the extension-locus (E) which controls the generation of pheomelanin also in other species.

Display of the Amber coloration depends on the presence/absence of dominant Orange. In the absence of Orange, males and females with genotype e/e will have the Amber coloration. Amber males that have the Orange gene will be red. Amber females that have one copy of the Orange gene will be amber/red tortoiseshell. Amber females with two copies of the Orange gene will be red.

Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
1 - 2 weeks

  4 ) Genetic Blood groups in cats

update September 2019: LABOKLIN holds the patent for the new improved test, which:
  • is validated for all cat breeds except Domestic Shorthair, and
  • can now check for more 'b' allele variants than ever before including the b3 which was identified by researchers at Laboklin, and
  • can check for the 'c' allele which is resposnible for the AB serotyp, and
  • only available at Laboklin
Breed
All Cat Breeds .
The Disease
The AB system is the major blood group system in domestic cats. The common blood types are A and B. Cats with bloodtype B have anti-A antibodies at a high titer and cats with blood type A have anti-B antibodies at a low titer. Cats with the rare AB blood type do not have anti-A or anti-B antibodies. These natural antibodies can leed to bloodgroup incompatibility that can be lethal. The condition is known as Neonatal isoerythrolysis (NI), first symptoms are dyspnea, vomiting and agitation.

A recent study at Laboklin identified a number of new variants involved in determining the different blood groups in cats. Our Genetic Blood Group DNA test has now been updated with the new variants and as a result we can now screen all cat breeds except Domestic Shorthair for genetic blood groups. The updated test can detect the 'b' mutation which is reposnible for blood group 'B' more accurately than before and in more breeds, and the 'c' mutation which is repsonsible for blood group 'AB' in Ragdoll and Bengal can now be detected.

The test is valid for all cat breeds except: Domestic Shorthair.

The new improved test is more comperhensive than any other commercially available tests.

Neonatal isoerythrolysis (NI):

Neonatal isoerythrolysis occurs when kitten with blood group A or AB (also known as C) are born to a queen with blood type B. A-type and AB-type kittens absorb the anti-A antibodies from the breast milk. The hemolytic disease that ensues can be lethal.

This incompatibility reaction, especially important for breeders, is neonatal isoerythrolysis (NI). Neonatal isoerythrolysis in cats, also called fading kitten syndrome, is a dissolution of the red blood cells.

Only new born cats with blood groups A or AB (also known as C) whose mother has blood group B are affected by NI. In pedigree catteries, neonatal isoerythrolysis may occur in first-born and multiparous queens with blood group B, if they are mated to toms having blood groups A or AB (also known as C).

The kittens, with blood group A and AB (also known as C), which were born healthy, however, take up the mother's antibodies with the colostrum. These bind to the erythrocytes, which are then destroyed. Anaemia, excretion of protein in the urine and jaundice are the consequences, so that the kittens usually die within the first week of life. In some cases, the intestinal barrier is already closed at the time of birth, so that the absorption of the immunoglobulins by the kitten is prevented. Therefore, some theoretically at-risk kittens may not develop neonatal isoerythrolysis. Thus, not all kittens with blood groups A and C whose mother is type B develop NI.

Good to know Blood type B kittens whose mothers have blood group A do not develop NI. This is due to the low anti-B antibody titre in blood group A queens.

As a rule, new born kittens with clinical symptoms cannot be treated successfully. However, neonatal isoerythrolysis can be prevented by determining the blood groups of possible breeding partners in advance and avoiding mating between queens with blood group B and toms with types groups A or AB (also known as C). However, if such mating does occur, the kittens with blood groups A or AB (also known as C) should be separated from their type B mother in the first 16-24 hours after birth to prevent antibody uptake before the intestinal barrier is closed. For the genetic blood group determination, Laboklin requires either an EDTA blood sample (0.5 - 1 ml) or 2 cheek swabs. The sample run time after sample arrival is approx. 3-5 working days.

Trait of Inheritance

Inheritance : N > c > b trait
Description

The differences between blood types is determined by the activity of cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH). CMAH is only active in type A erythrocytes and either absent or non-functional in type B red blood cells. This inactivity is caused by different mutations in the CMAH gene.

The original mutation which is causative for blood type B was found by Leslie A. Lyons research team and allows for correctly identifying 86 % of all type B cats which still left 14 % of serological type B cats misidentified, especially Ragdolls and Turkish Angora cats.

Our own research shows that additional screening for two other novel mutations correctly identifies 99% of all type B cats. By determining just these two novel variants all type A and B Ragdolls were identified correctly. These two mutations were also found to be causative for blood type B in Turkish Angora, Neva Masquerade, Scottish Fold as well as Domestic Shorthair cats

Leslie A. Lyons research team found another variant in CMAH which is responsible for blood type C (AB) in Ragdolls. We found that this specific mutation is not exclusively found in Ragdolls even though it is rare in other breeds. Type C Bengal cats could also be correctly identified by this mutation and it was also found in British Shorthairs, Maine Coons and Scottish Fold cats.

Since 2017 we practice a genotyping scheme with four variants, three of those to identify blood type B cats correctly and one additional to include the most common variant for blood type C.

The test now detects three genetic variants for the 'b' allele (268T>A, 179G>T, 1322delT) and one variant for the 'c' allele (364C>T).

The 3 'b' variants are also known as b1, b2, and b3.

Sample Requirements
Whole blood in EDTA tube (0.5 - 1 ml) or Buccal Swabs.
Turnaround
1 - 2 weeks
Price for the above 4 tests
£ 72.00 (including VAT)

To order:




new test:
Androgen Insensitivity Syndrome (AIS)
new test:
ACAN Dwarfism (Chondrodysplasia)
new test:
Predictive Height Test ( LCORL)
new test:

Tractability
new test:
Coat colour Sunshire Dilution



See also:

 
 
Home   |   Genetic Diseases  |   Coat Colours / Length  |   Identity / Parentage  |   Reptiles & Amphibians  |   Avian Tests  |   Profiles / Screening  |   Infectious Diseases  |   Allergy testing  |   Organs / Parameters  |   About us  |   Contact Us
LABOKLIN GmbH & Co. KG
ISO / DIN 17025 Accredited Laboratory
© 2007-2023 Laboklin (UK)
Unit 20, Wheel Forge Way, Trafford Park, Manchester, M17 1EH
Tel. 0161 282 3066